Sustainability Assessment of Applications for Wood Waste and Environmental Assessment of Recycled Technical Wood in Singapore

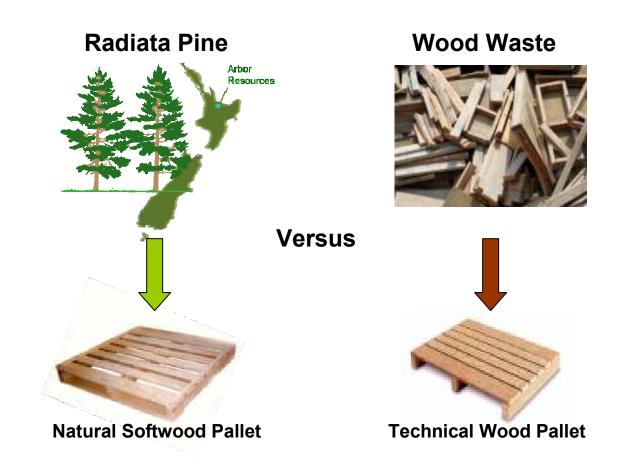
Ng Ruisheng and Patrick Shi

Sustainability & Technology Assessment Section, 30 June 2010 (Revised version)

The images used in this presentation are taken from internet sources. They should not be reproduce without the permission of the respective authors.

Copyright © 2010 All rights reserved Singapore Institute of Manufacturing Technology

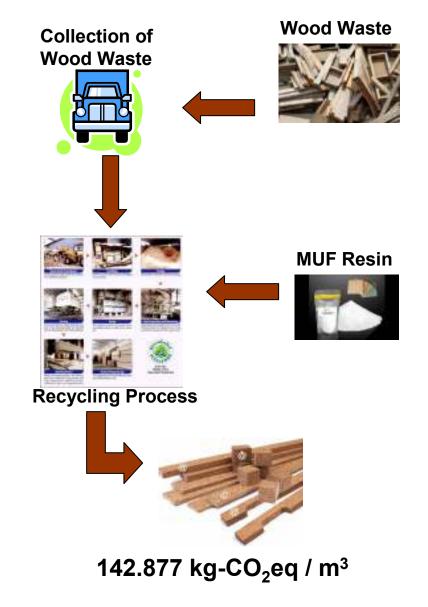
Project Objectives and Scope


The aims of this project are:

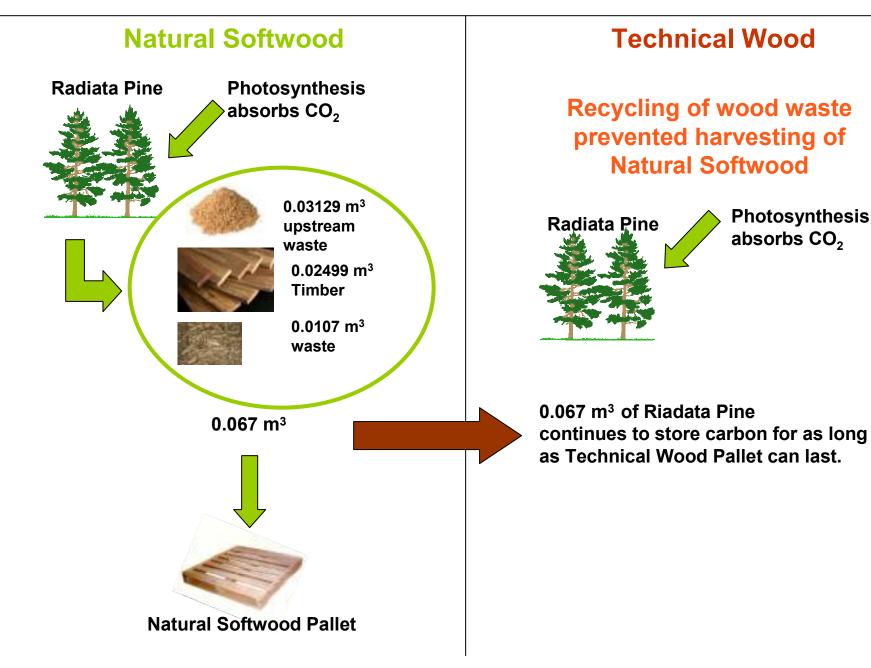
- To assess, quantify and compare the environmental impacts of recycled technical wood with virgin wood in the application of wooden pallet and wooden door using a comparative *LCA approach*.
- To explore on the environmental feasibility of converting the lower grade wood waste into possible application as biomass for energy.


Scope of the project:

- Products identified for the comparative study
 - ✤ a standard size 1200 mm X 1000 mm pallet
 - ✤ a standard size 2200 mm X 830 mm standard door
- Global Warming Potential Impact Assessment category (GWP₁₀₀).
- Measures the potential of global warming due to the amount of greenhouse gas (GHG) emissions generated.
- Unit: kg-CO₂eq., the higher the value, the higher the "*environmental burden*".


Life Cycle Assessment of Pallet

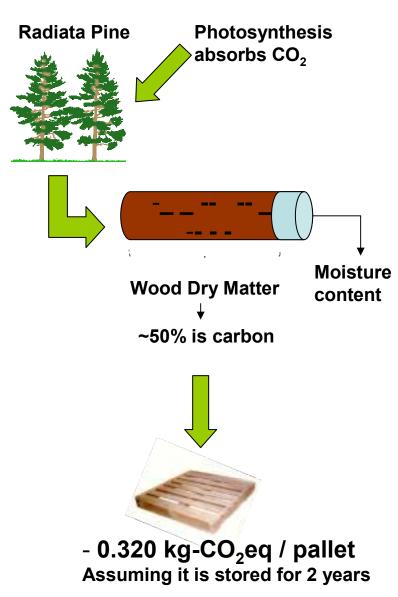
Timber Preparation


Technical Wood

Pallet Production

Natural Soft	wood	Technical Wood		
94.461 kg-CO ₂ eq / m3		142.877 k	g-CO ₂ eq / m3	
Category	Emissions (kg-CO ₂ eq / Pallet)	Category	Emissions (kg-CO ₂ eq / Pallet)	
0.02499 m ³ Timber	3.373	0.02425 m ³ Timber	3.572	
0.0107 m ³ waste		0.0007 m ³ waste		
36 Steel Nails	0.425	36 Steel Nails	0.425	
Pallet Assembly	0.115	Pallet Assembly	0.115	
Post Heat Treatment	0.096	N.A		
Total for 1 Pallet	4.009	Total for 1 Pallet	4.112	

Avoided Impact



GWP – Cradle to Gate

Natural Soft	wood	Technical Wood			
Category	Emissions (kg-CO ₂ eq / Pallet)	Category	Emissions (kg-CO ₂ eq / Pallet)		
0.02499 m³ Timber0.0107 m³ waste	3.373	0.02425 m ³ Timber 0.0007 m ³ waste	3.572		
36 Steel Nails	0.425	36 Steel Nails	0.425		
Pallet Assembly	0.115	Pallet Assembly	0.115		
Post Heat Treatment	0.096	N.A			
N.A		Avoided Impact - Carbon Storage for 1 year	- 0.565		
Net Total for 1 Pallet	4.009	Net Total for 1 Pallet	3.547 11.52% Better		

Carbon Sequestration

Natural Softwood

Technical Wood

Carbon is also stored in wood waste

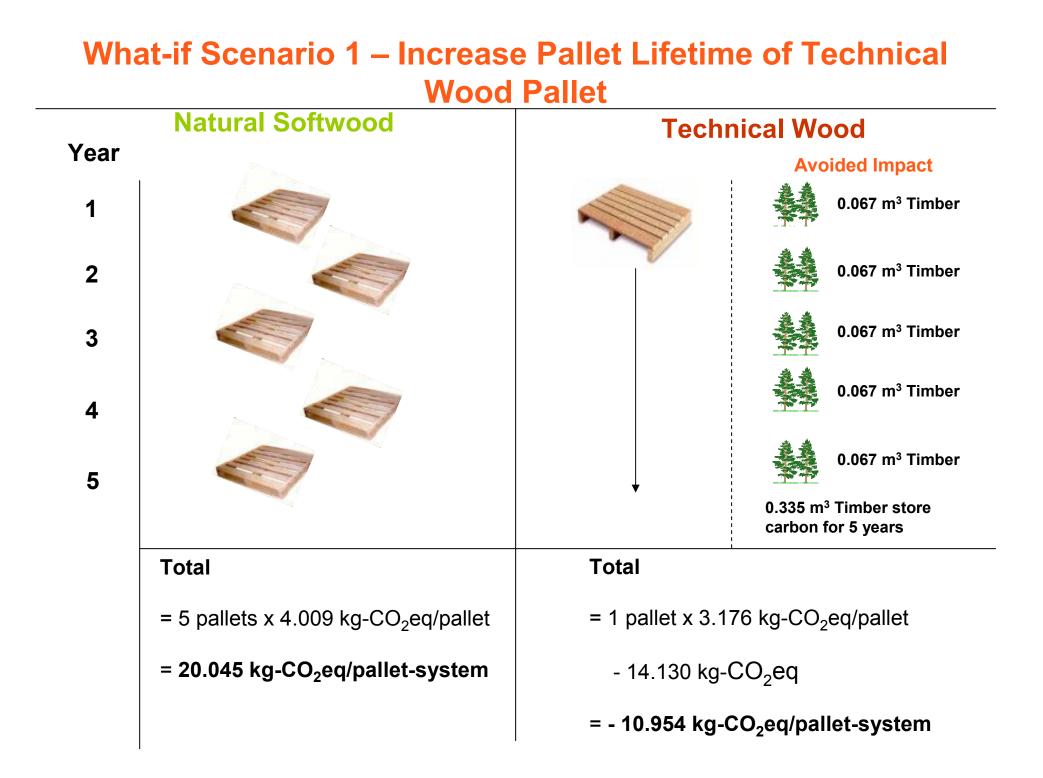
- 0.374 kg-CO₂eq / pallet Assuming it is stored for 2 years

Avoided Impact due to nonharvesting

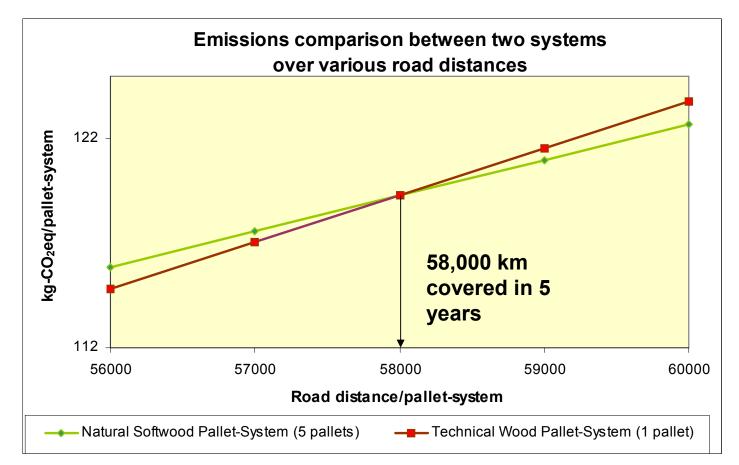
Photosynthesis absorbs CO₂

0.067m³ Timber continues to store carbon for another 2 years

- 1.130 kg-CO₂eq / pallet

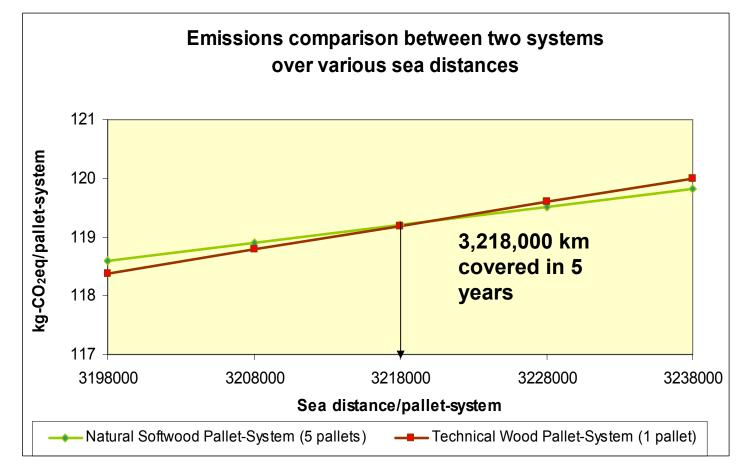

Net total: - 1.504 kg-CO₂eq / pallet

GWP Comparison at varying Pallet Lifetime

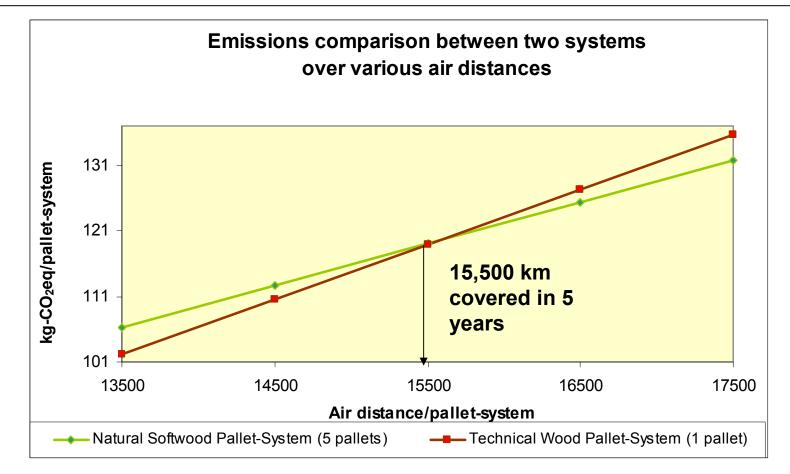

	Pallet Lifetime (Years)				
	1	2	3	4	5
Natural Softwood Pallet (kg-CO ₂ eq/pallet)	4.009	3.689	3.529	3.369	3.209
Technical Wood Pallet <i>before</i> Adjustment (kg-CO ₂ eq/pallet)	4.112	3.737	3.550	3.363	3.176
Adjustment (Avoided Impact)* (kg-CO ₂ eq/pallet)	-0.565	-1.130	-1.696	-2.261	-2.826
Technical Wood Pallet <i>after</i> Adjustment (kg-CO ₂ eq/pallet)	3.547	2.607	1.855	1.102	0.350

Footnote *

- The avoided impact is due to the non-harvesting of Radiata Pine Tree for Natural Softwood Pallet.
- The longer the Pallet Lifetime of Technical Wood Pallet, the greater the potential avoided impact.
- The avoided impact can only be attributed to the Technical Wood Pallet as savings under scenarios set in this study



What-if Scenario 2 – Increase Pallet Lifetime and include Usage (Road Transport)


- On average, a Road distance of 11,600 km is covered per year
- This is approximately equivalent to 16 return-trips from Singapore to Kuala Lumpur (Malaysia)

What-if Scenario 3 – Increase Pallet Lifetime and include Usage (Sea Transport)

- On average, a Sea distance of 643,600 km is covered per year
- This is approximately equivalent to 23 return-trips from Singapore to San Francisco (USA)

What-if Scenario 4 – Increase Pallet Lifetime and include Usage (Air Transport)

- On average, an Air distance of 2,900 km is covered per year
- This is approximately equivalent to 2 return-trips from Singapore to Penang (Malaysia)

GWP – Emission Factors of Transport

Natural Softwood			Technical Wood		
Weight = 12.77 kg				Weight = 16	6.76 kg
Category	Emissions Factor (kg-CO ₂ eq / t-km)	Emissions (kg-CO ₂ eq / Pallet)	Category	Emissions (kg-CO ₂ eq / t-km)	Emissions (kg-CO ₂ eq / Pallet)
Road trip – 100 km	0.134	1.711	Road trip – 100 km	0.134	2.246
Sea trip – 1,000 km	2.413e-3	0.031	Sea trip – 1,000 km	2.413e-3	0.040
Air trip – 1,000 km	0.500	6.385	Air trip – 1,000 km	0.500	8.381

Intermediate Conclusions 1

Natural Softwood

94.461 kg-CO₂eq / m³

4.009 kg-CO₂eq / pallet

20.045 kg-CO₂eq / pallet-system

Pallet Lifetime = 1 Year

Technical Wood

142.877 kg-CO₂eq / m³

3.547 kg-CO₂eq / pallet

11.52% reduction

- 10.954 kg-CO₂eq / pallet-system

Pallet Lifetime = 5 Years

Intermediate Conclusions 2

Natural Softwood

x 5

20.045 kg-CO₂eq / pallet-system

Pallet Lifetime = 1 Year

Technical Wood

- 10.954 kg-CO₂eq / pallet-system

Pallet Lifetime = 5 Years

Include Usage (Road Transport)

Technical Wood Pallet-System has lower GWP if it covers Road distance that is less than 58,000 km in 5 years

Include Usage (Sea Transport)

Technical Wood Pallet-System has lower GWP if it covers Sea distance that is less than 3,218,000 km in 5 years

Include Usage (Air Transport)

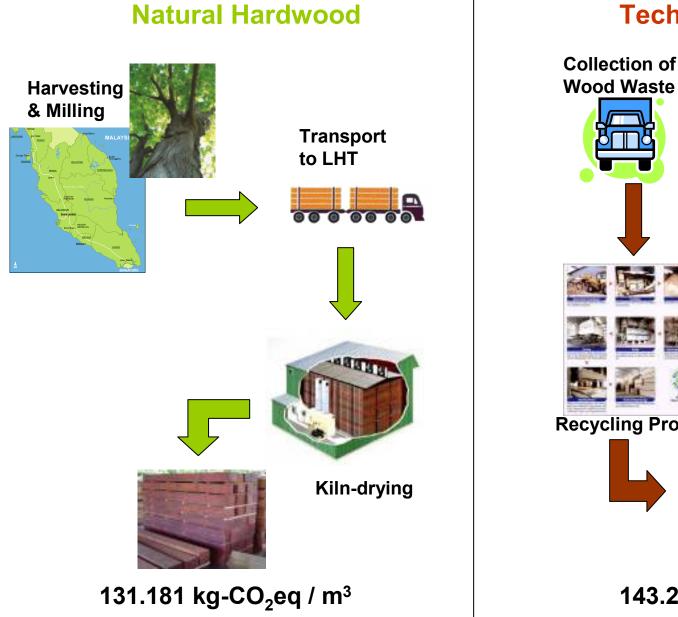
Technical Wood Pallet-System has lower GWP if it covers Air distance that is less than 15,500 km in 5 years

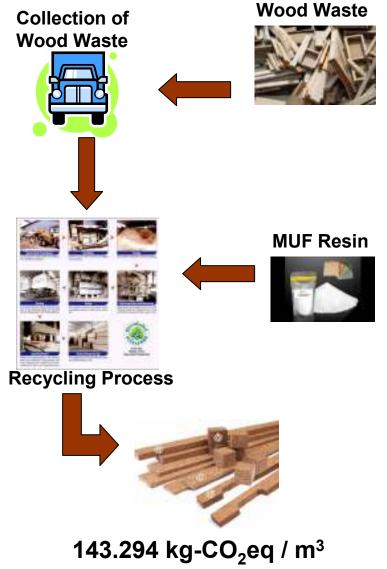
Life Cycle Assessment of Door

Kapur/Nyatoh

Wood Waste

Versus

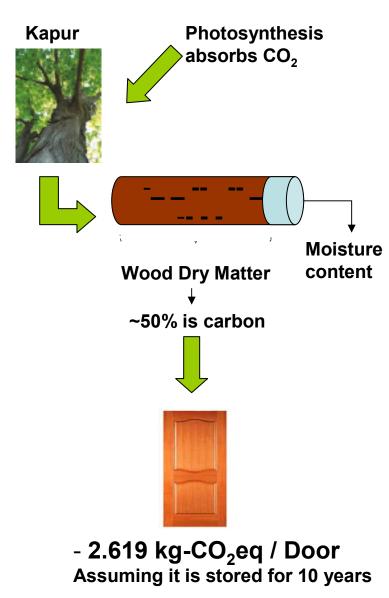

Natural Hardwood Door



Technical Wood Door

Timber Preparation

Technical Wood



Door Production

Natural Harc	lwood	Technical Wood		
131.181	xg-CO ₂ eq / m3	143.294 k	g-CO ₂ eq / m3	
Category	Emissions (kg-CO ₂ eq / Door)	Category	Emissions (kg-CO ₂ eq / Door)	
0.026316 m ³ Timber 0.026316 m ³ waste	6.904	0.026316 m ³ Timber 0.000814 m ³ waste	3.888	
Door Production	11.519	Door Production	11.519	
Impregnation	0.306	N.A		
Fire Retardant	0.008	N.A		
Post Heat Treatment	0.121	N.A		
Total for 1 Door	18.858	Total for 1 Door	15.406	

Carbon Sequestration

Natural Hardwood

Technical Wood

- 2.574 kg-CO₂eq / Door Assuming it is stored for 10 years

Avoided Impact due to nonharvesting

Photosynthesis absorbs CO₂

0.0526 m³ Timber continues to store carbon for another 10 years

- 15.772 kg-CO₂eq / Door

Net total: - 18.346 kg-CO₂eq / Door

GWP – Cradle to Gate

Category	Emissions (kg-CO ₂ eq / Door)	Category	Emissions (kg-CO ₂ eq / Door)
0.026316 m ³ Timber		0.026316 m ³ Timber	
0.026316 m ³ waste	6.904	0.000814 m ³ waste	3.888
Door Production	11.519	Door Production	11.519
Impregnation	0.306	N.A	
Fire Retardant	0.008	N.A	
Post Heat Treatment	0.121	N.A	
Carbon Storage for 10 years	- 2.619	Carbon Storage for 10 years (< dry matter)	- 2.574
N.A		Avoided Impact - Carbon Storage for 10 years	- 15.772
Total for 1 Door	16.239	Total for 1 Door	- 2.940 118% Better

GWP Comparison at varying Door Lifetime

	Door Lifetime (Years)				
	10	15	20	25	30
Natural Hardwood Door (kg-CO ₂ eq/door)	16.239	14.929	13.620	12.310	8.519
Technical Wood Door <i>before</i> Adjustment (kg-CO ₂ eq/door)	12.832	11.545	10.258	8.971	5.245
Adjustment (Avoided Impact)* (kg-CO ₂ eq/door)	-15.772	-23.659	-31.545	-39.431	-47.317
Technical Wood Door <i>after</i> Adjustment (kg-CO ₂ eq/door)	-2.940	-12.114	-21.287	-30.460	-42.072

Footnote *

- The avoided impact is due to the non-harvesting of Kapur/Nyatoh Tree for Natural Hardwood Door
- The longer the Lifetime of Technical Wood Door, the greater the potential avoided impact.
- The avoided impact can only be attributed to the Technical Wood Door as savings under scenarios set in this study

Intermediate Conclusions 3

Natural Hardwood

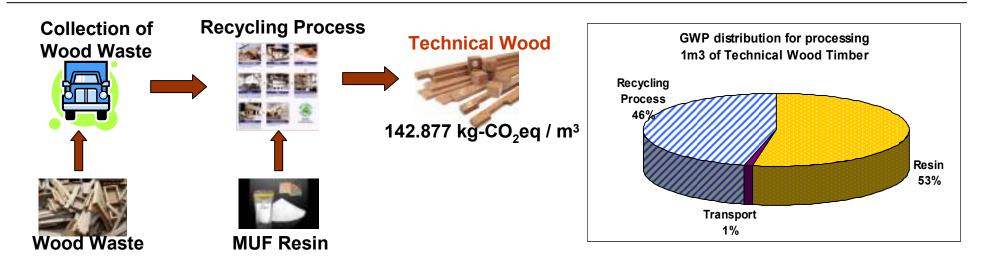
131.181 kg-CO₂eq / m³

16.239 kg-CO₂eq / door

8.519 kg-CO₂eq / door

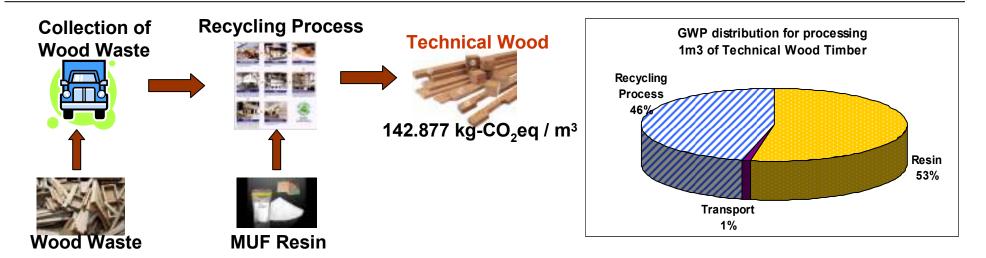
Technical Wood

143.294 kg-CO₂eq / m³



118% reduction

-42.072 kg-CO₂eq / door


Recommendation 1 – Alternative Energy Source

Emissions by using alternative Energy Source for Recycling Process

Energy Source	Emissions Factor (kg-CO ₂ eq/kWh)	Emissions (kg-CO ₂ eq/m³)	% Change	Emissions (kg-CO ₂ eq/pallet)	% Change
Electricity	0.5759	215.306	+ 50.69	5.622	+ 47.52
Natural Gas	0.2742	142.877	Baseline	3.547	Baseline
Woody Biomass	0.0085	79.120	- 44.62	1.953	- 44.94

Recommendation 2 – Use Resin Alternatives

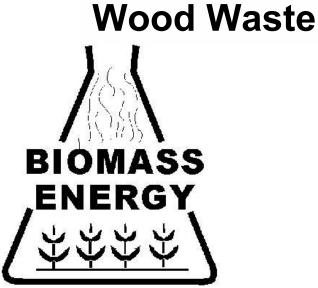
Emissions by using Resin Alternatives

Resin Type	Emissions (kg-CO ₂ eq/m³)	% Improvement	Emissions (kg-CO ₂ eq/pallet)	% Improvement
MUF	142.877	Baseline	3.547	Baseline
MUF-1241	133.999	6.21	3.325	6.26
UF-1205	133.087	6.85	3.302	6.91
UF-1206	134.725	5.71	3.343	5.75

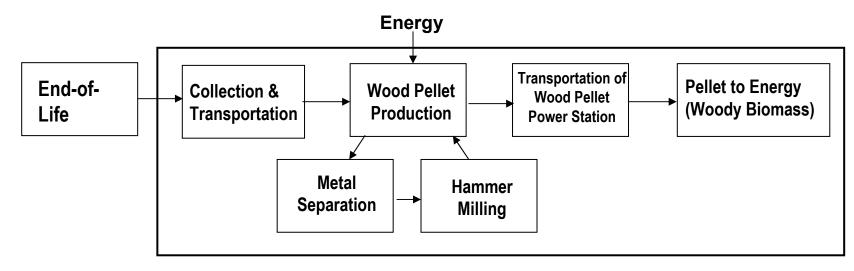
Resin Alternatives Information

Company Name: Casco Adhesives (Asia) Pte Ltd Address: 14 Sungei Kadut Way, Singapore 728788 Phone: + 65 6762 2088 Fax: + 65 6365 5852

E-mail: info sig@akzonobel.com

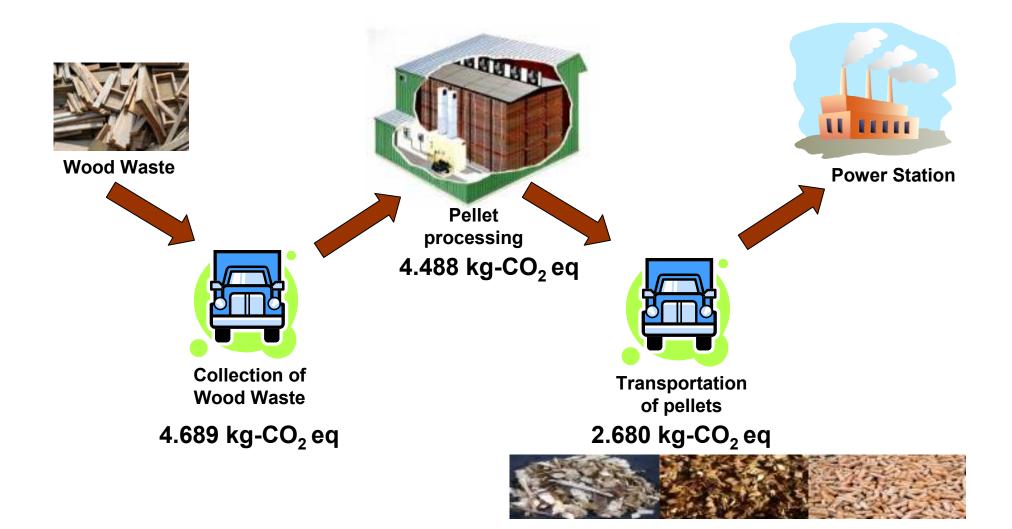

Resin Type	Applicability
MUF-1241	 A wood adhesive for laminated beams, which gives a light coloured joint. It is always used with hardener 2542. It is suitable for load-bearing structure (subject to approval)
UF-1205	 A wood adhesive, which must be used with a hardener. Free formaldehyde is 0.7 %. It is widely used in the European wood working industry for example for flooring, block glueing, furniture, veneering and so on. It is mostly cured in hot- or high frequency presses, but with suitable hardeners it can also be used at room temperature.
UF-1206	 A wood adhesive, which must be used with a hardener. Free formaldehyde is 0.7 %. It is widely used in the European wood working industry for example for flooring, block glueing, furniture, veneering and so on. It is mostly cured in hot- or high frequency presses, but with suitable hardeners it can also be used at room temperature.

Biomass

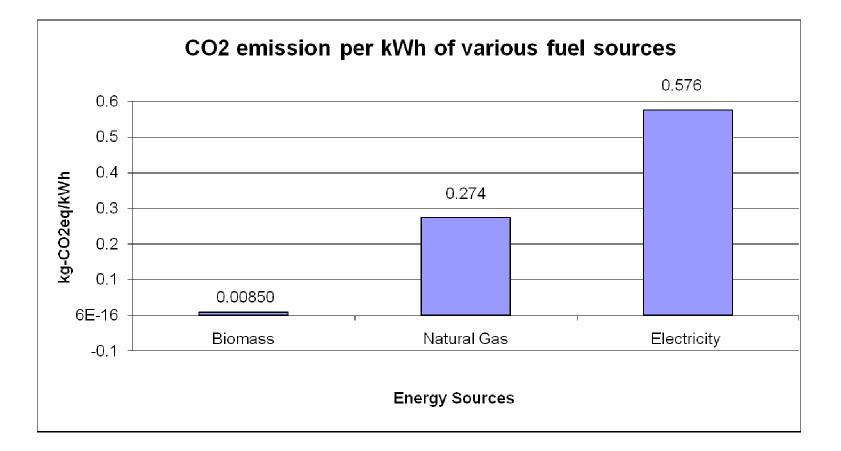

The aims of this project are:

- To assess, quantify and compare the environmental impacts of recycled technical wood with virgin wood in the application of wooden pallet and wooden door using a comparative LCA approach.
- To explore on the environmental feasibility of converting the lower grade wood waste into possible application as biomass for energy.

System Boundary - Biomass



System Boundary



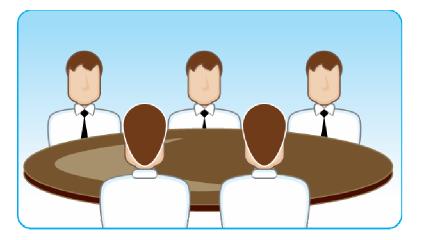
Emissions for biomass production

Total 11.857 kg-CO₂ eq

Emissions for biomass production

Wood Waste investigation

	Materi	als HH	V (MJ/kg)	LHV (MJ/kg))
	Wood W	/aste	16.8	16.6	_
	Materials	C%	H% 1	N% S%	0%
	Wood Waste	45.42	6.00 0	.91 < 0.5	32.55
	Materials	Moisture %	Volatiles %	Fixed Carbon %	Ash%
١	Nood Waste	8.88	56.39	28.37	6.24



Biomass Conclusion

- 1. Distance travelled to collect the waste wood is relatively short thus low carbon emission in transportation.
- 2. Collected waste wood need not be dried to reduce the moisture which translates to low energy consumption in producing of biofuel.
- 3. Waste wood from LHT factory is recycled to biomass thus no carbon emission in transporting of biomass and also the cost of disposal.
- 4. Distance to the power plant is relative short thus low carbon emission in transportation.

Questions?

